- 3 a , b , c を実数とする.ベクトル $\overrightarrow{v_1}=(3,0)$, $\overrightarrow{v_2}=(1,2\sqrt{2})$ をとり, $\overrightarrow{v_3}=a\overrightarrow{v_1}+b\overrightarrow{v_2}$ とおく.座標平面上のベクトル \overrightarrow{p} に対する条件
- (*) $(\overrightarrow{v_1} \cdot \overrightarrow{p})\overrightarrow{v_1} + (\overrightarrow{v_2} \cdot \overrightarrow{p})\overrightarrow{v_2} + (\overrightarrow{v_3} \cdot \overrightarrow{p})\overrightarrow{v_3} = c\overrightarrow{p}$

を考える.ここで $\overrightarrow{v_i}\cdot\overrightarrow{p}$ $(i=1,\,2,\,3)$ はベクトル $\overrightarrow{v_i}$ とベクトル \overrightarrow{p} の内積を表す.このとき以下の問いに答えよ.

- (1) 座標平面上の任意のベクトル $\overrightarrow{v}=(x,y)$ が,実数 s , t を用いて $\overrightarrow{v}=s\overrightarrow{v_1}+t\overrightarrow{v_2}$ と表されることを,s および t の各々を s , y の式で表すことによって示せ.
- (2) $\overrightarrow{p}=\overrightarrow{v_1}$ と $\overrightarrow{p}=\overrightarrow{v_2}$ の両方が条件(*)をみたすならば,座標平面上のすべてのベクトル \overrightarrow{v} に対して, $\overrightarrow{p}=\overrightarrow{v}$ が条件(*)をみたすことを示せ.
- (3) 座標平面上のすべてのベクトル \overrightarrow{v} に対して , $\overrightarrow{p}=\overrightarrow{v}$ が条件 (*) をみたす . このような実数の組 (a,b,c) をすべて求めよ .