r は正の実数とし,角 heta は $0< heta<rac{\pi}{2}$ を満たすとする.xy 平面の原点 O を P_0 , (1,0) を P_1 として , 点 P_2,P_3,\cdots を , 以下の条件 $({\mathrm a})$, $({\mathrm b})$, $({\mathrm c})$ が $n=0,1,2,\cdots$ に対 して満たされるようにとる.

- $P_{n+1}P_{n+2} = rP_nP_{n+1}$ (a)
- (b) $\triangle P_n P_{n+1} P_{n+2} = \theta$
- (c) 点 P_n , P_{n+2} , P_{n+3} は同一直線上にある.

このとき次の問に答えよ.

- r を θ を用いて表せ. (1)
- 点 P_n の座標を (x_n,y_n) とする、複素数 $z_n=x_n+y_ni$ を θ を用いて表せ、 (2)
- 数列 $\{x_n\}$, $\{y_n\}$ がともに収束するための必要十分条件は $\frac{\pi}{3} < \theta < \frac{\pi}{2}$ であること を証明せよ.

以下 $\frac{\pi}{3}<\theta<\frac{\pi}{2}$ とする・極限値 $\lim_{n o\infty}x_n$, $\lim_{n o\infty}y_n$ をそれぞれ θ の関数と考えて , $\alpha(\theta)$, $\beta(\theta)$ とおく .

- $\begin{array}{ll} \text{(4)} & \quad \underline{\text{ 極限値}} \, \lim_{\theta \to \frac{\pi}{3} + 0} \alpha(\theta) \text{ , } \lim_{\theta \to \frac{\pi}{3} + 0} \beta(\theta) \text{ をそれぞれ求めよ .} \\ \text{(5)} & \quad \frac{\pi}{3} < \theta < \frac{\pi}{2} \text{ における } \beta(\theta) \text{ の最大値を求めよ .} \\ \end{array}$